鋳型繊維を用いた極細金属あるいは 金属酸化物チューブの調製と その電力貯蔵デバイスへの応用

山口大学大学院医学系研究科 (工学系)

堤 宏守

2012年1月23日(東京)

- 1. 極細チューブの特徴とその調製方法
- 2. 極細鋳型繊維を用いた極細金属化合物チュ ーブの調製
 - ニッケルの場合
 - -銅の場合
- 3. 極細酸化ニッケルチューブの応用について - 電力貯蔵用デバイス用電極への応用
- 4. まとめ

1. 極細チューブの特徴とその調製方法

- 2. 極細鋳型繊維を用いた極細金属化合物チュ ーブの調製
 - ニッケルの場合
 - -銅の場合
- 3. 極細酸化ニッケルチューブの応用について – 電力貯蔵用デバイス用電極への応用
- 4. まとめ

なぜ,我々はチューブ構造に注目するのか?

同体積の球とチューブの表面積比較

電界紡糸法により調製される極細繊維

電界紡糸の機構

注射針と金属基板(ス テンレス板など)の間に 電圧を印加すると、液 滴表面に電荷が集まり、 互いに反発して、円錐 状になる。

電荷の反発力が表面 張力を超えると、液は 先端から金属基板に向 かって噴出する。 液流が細くなると表面電荷密 度が大きくなり、さらに細くなり、 引き伸ばされ、比表面積がま すます大きくなり、溶媒が飛び 出し、繊維が紡糸される。

電界紡糸法による鋳型繊維の調製

^a Poly(methyl methacrylate), ^b poly(vinylidene fluoride-co-hexafluoropropylene), ^c N,N-dimethylformamide

Ni-P/ Polymer/ PdCl₂

無電解ニッケルめっき浴組成

Chemicals	Concentration (mol/ I)
NiSO4·6H2O	0.11
Na3C6H5O7 • 2H2O	0.05
NaH2PO2 · H2O	0.22
CH3COONH4	0.32
H ₂ NCH ₂ COOH	0.13

$$\begin{array}{l} \mathsf{H}_2\mathsf{PO}_2^{-} + \mathsf{H}_2\mathsf{O} \rightarrow \mathsf{H}_2\mathsf{PO}_3^{-} + 2\mathsf{H}^+ + 2\mathsf{e}^-\\ \mathsf{Ni}^{2+} + 2\mathsf{e}^- \rightarrow \mathsf{Ni}\\ \mathsf{H}_2\mathsf{PO}_2^{-} + 2\mathsf{H}^+ + \mathsf{e}^- \rightarrow 2\mathsf{H}_2\mathsf{O} + \mathsf{P} \end{array}$$

pH 6, Bath temperature 60 °C

加熱処理により鋳型繊維の除去

鋳型繊維・めっき処理鋳型繊維

PMMA/ PdCl₂ 平均直径 1.7 μm

Ni-P/ PMMA/ PdCl₂ 平均直径 4.9 μm

PVDF-HFP/ PdCl₂ 平均直径 0.3 μm

平均直径 0.4 μm

無電解めっきを可能にしているプロセス

2 μm

PMMA/ PdCl₂ 平均直径 1.7 μm

ファイバー表面にPd粒子が生成することを確認

NiO/ PMMA/ PdCl₂

NiO/ PVDF-HFP/ PdCl₂

平均直径 4.7 μm (内径 2.5 μm)

平均直径 0.6 μm (内径 0.3 μm)

各試料のXRD測定結果

M. Wierzbicka, A. Malecki, Journal of Thermal Analysis and Calorimetry., 55, 981-987(1991).

ポリ塩化ビニル(PVC)、ポリスチレン(PS)を用いて鋳型ファイバー調製し、 チューブの作製を試みた。

PS

金属チューブの内径・外径制御

様々なサイズ(内径,外径)を有する極細チューブを 同一手法で調製可能

加熱処理によるニッケルめっき層の変化

Plating time [min]	60				
Heat treatment temperature [°C]	0	400		400 550	
Heating time [h]	0	2	4	2	4
C [wt.%]	13.0	15.2	7.5	6.4	3.7
O [wt.%]	7.2	11.9	17.4	32.7	18.7
P [wt.%]	4.6	3.9	5.1	1.0	
Ni [wt.%]	75.2	69.0	70.0	59.9	77.6

抽出処理による鋳型繊維の除去

アセトン

鋳型繊維の良溶媒への浸漬

Ni-P/ PMMA/ PdCl₂ (DMF)

1. 極細チューブの特徴とその調製方法

2. 極細鋳型繊維を用いた極細金属化合物チュ ーブの調製

-ニッケルの場合

-銅の場合

 3. 極細酸化ニッケルチューブの応用について - 電力貯蔵用デバイス用電極への応用

 4. まとめ

鋳型繊維の調製方法

Polymer solution

Polymer	PdCl ₂ 10 ⁻³ [g/L]	Solvent
Poly(methyl methacrylate) (PMMA)	1.25	Chloroform
Poly(styrene) (PS)	1.25	THF ¹⁾ / DMF ²⁾ (v/ v = 7/ 3)
Poly(vinylidene fluoride-co- hexafluoropropylene) (PVD	F-HFP) 1.25	Acetone/ DMF (v/ v = 7/ 3)
Syringe Tip-collector	Stainless teel plate Electro- spinning	PdCl ₂ Polymer
Syringe pump		PMMA/ PdCl ₂ PS/ PdCl ₂
High voltage	J	PVDF-HFP/ PdCl ₂
power supply	¹⁾ Tetrahydrofuran	²⁾ N,N-Dimethylformamide

鋳型繊維への無電解銅めっき処理

鋳型繊維の熱処理による除去

PMMA/ PdCl₂

PS/ PdCl₂

PVDF-HFP/ PdCl₂

平均直径 3.22 μm

平均直径 0.84 μm

平均直径 0.53 μm

PS/ PdCl₂

PVDF-HFP/ PdCl₂

繊維表面上の析出物が銅であることをXRD測定結果より確認

極細酸化銅チューブ

PMMA

(a)

平均直径 2.81 μm

内径 1.78 μm

PVDF-HFP

内径 0.35 μm

平均直径 5.19 μm

10 µm

内径 3.14 μm

2 μm

XRD測定結果

鋳型繊維径とチューブ内径の関係

抽出による鋳型繊維の除去

- 1. 極細チューブの特徴とその調製方法
- 2. 極細鋳型繊維を用いた極細金属化合物チュ ーブの調製
 - -ニッケルの場合

 4. まとめ
 3. 極細酸化ニッケルチューブの応用について ー電力貯蔵用デバイス用電極への応用

蓄電デバイスの 重要性

現在の大型電池で 安定化すると

作製した電極

発泡Ni

PMMA/PdCl₂(DMF) ファイバー

NiOチューブ電極

電気化学測定

NiOチューブ<mark>固定化部分(0.5×0.5 cm²)</mark>を電解液へ浸漬

電極の電気化学的応答

NiOの電気化学反応に伴うピークを確認した。

作製した電極を用いた試作セルの充放電特性

Integrated circuit, by Jack Kilby, September 1958. Gift of Texas Instruments

太陽や風の エネルギーを利用しても

使用済み電池の ゴミの山では...

謝辞

- 本研究の一部は、以下の助成を受けて行われた。
 - -(公財)日本板硝子材料工学助成会

ご静聴有り難うございました