

2015年1月26日

第32回学術講演会

第32回無機材料に関する最近の研究成果発表会

ー材料研究に新しい風を一

(公財)日本板硝子材料工学助成会

住友会館(泉ガーデンタワー 42階)

単一層で多機能性を有する有機・無機ハイブリッド発光デバイスの開発

粘土面での光エネルギー集約を利用した 発光性酸素センシング

愛媛大学 大学院理工学研究科 教授 佐藤 久子

内容

(1) 粘土・イリジウム錯体複合薄膜の製造

- (2) 複合膜の発光特性と酸素による消光
- (3) 3種類のイリジウム錯体を用いた多色発光化

今後の展望 エネルギー集約系の構築

H. Sato *et al. New. J. Chem.* 35, 2467 (2012) Hot Article

lr~1x10⁻⁹ mole

Irradiated with a UV Lamp in air

化学 医療 分析 酸素 センサ-溶存酸素電極、ジルコニア酸素 環境 センサーなどが実用化

モニタリング

3

発光体としてのイリジウム錯体

Cyclometalated Ir(Ⅲ)錯体

脱プロトンして安定キレート 形成、強い配位場 ドナー性 > 励起寿命が長い (0.1~1µs)

▶ 高い量子収率をもつ(100~10%)

> 温度、光、酸素に対して安定

配位子によって発光色を広い波長 範囲で系統的に変えられる

M. S. Lowry et.al. Chem. Eur. J. 12, 7970 (2006)

私たちの目指すこと:ナノメートルオーダーの厚さの膜を用いた酸素センシングの試み

- •縮小化
- ・迅速で可逆な応答性
- ·長寿命
- ·高感度
- •高選択性

Emitting monolayers for sensing

発光センシングデバイスを目指して 1ミリメートルの百万分の1の厚さの "光る"膜を使って、酸素を検出する"

膜強化剤としての粘土鉱物

四面体シート

八面体シート

合成サポナイト

 $[(Na_{0.25}Mg_{0.07})(Mg_{2.98}AI_{0.01})(Si_{3.6}AI_{0.4})O_{10}(OH)_2)]$

モンモリロナイト

(Na_{0 49}Mg_{0 14})[(Si_{7 70}Al_{0 30})(Al_{3 12}Mg_{0 68}Fe_{0 19})]O₂₀(OH)₄

合成ヘクトライト

(Na_{0.70})[(Si_{8.00})(Mg_{3.50}Li_{0.30})]O₂₀(OH)₄

粘土鉱物とのハイブリッド化により、 発光強度の増大、発光波長の変調 が期待される

- Silicons
- Aluminums, magnesium

スメクタイト系粘土鉱物

古くからの粘土鉱物の応用

よく知られている粘土の特性

1. 地球上広く分布
2. 大きな表面積(~100 m²/g)
3. 酸触媒性(例:酸性白土)
4. 生体に無害(抗原抗体反応を起こさない)

Sodium montmorillonite

Fuller's earth

"粘土とともに"古賀慎著 (三共出版)

最新の材料としての粘土鉱物

粘土の先端材料特性:

- ▶ 剥離によって1ナノメートルの厚さの単一層になる → 無機ナノシート
- ▶ フィロシリケート面の2次元周期性
 - → 二次元規則的無機ホスト
- ▶ 人工合成による種々の金属イオン含有粘土 →新たな電子的、磁気的、光学的な特性

Clay mineral

exfoliation in water

Inorganic nanosheets

Negatively charged nanosheet (1 nm)

合成サポナイトの 水分散液 (ナノシート化状態)

フィロシリケート表面

層状ニオブ酸(n型)ナノシートとZn(II)-サポナイトナノシート (p型)をヘテロ接合させたダイオード

H. Sato, et al. Appl. Phys. Express 1, 035001-1-3(2008)

粘土LB (Langmuir-Blodgett)法 ~錯体・粘土複合薄膜の製造~

剥離した粘土鉱物

H. Sato et al. New. J. Chem. 35, 394 (2011)

撥水性水槽(トラフ)

トラフ温度 20 ℃、粘土量 10 mgL⁻¹、 表面圧 10 mNm⁻¹を最適条件とした。

H. Sato et al. New. J. Chem. 35, 394 (2011)

10

膜の表面圧力と分子占有面積の関係

合成サポナイトとのハイブリッド化

H. Sato, et al. New J. Chem., 38, 132 (2014)

原子間力顕微鏡による膜の表面観察

合成サポナイトとのハイブリッド化

H. Sato, et al. New J. Chem., 38, 132-138 (2014)

ナノメートルオーダーの厚さの薄膜からの 発光スペクトル

13

発光スペクトルにおよぼす酸素の影響

合成サポナイトとのハイブリッド化

H. Sato, et al. New J. Chem., 38, 132 (2014)

14

酸素に対する応答性

→ 迅速かつ可逆的な変化の達成

合成サポナイトとのハイブリッド化

H. Sato et al. New. J. Chem. 35, 394 (2011)

人工積層法の利点

Layer-by-layer (LBL) 累積法 ⇒ 異種のイリジウム(III) 錯体を望む 配列で累積膜を製造可能

異種の錯体膜を

望み通りの順番で

異種累積3層膜

上の二つはともに3種の錯体を含んでいるが、 発光の挙動は異なる? H. Sato, et al. New J. Chem., 38, 132-138 (2014)

3種のIr(III)錯体を人工積層した粘土LB膜 エネルギー効率

3種類錯体の人工積層膜

3種類錯体の混合膜

H. Sato, et al. New J. Chem., 38, 132 (2014)

異種錯体による3層膜による特異な 発光挙動:多色発光化

- 多層膜中の発光に及ぼす2つの要因:
 - 1)膜の中への酸素分子の拡散の程度
 - 2) 錯体間におけるエネルギー移動
 - 多層膜中の各イリジウム(III)錯体の発光における役割: DFPPY(ドナーとして働く) PPY(ドナーとアクセプターの両面をもつ) PIQ(アクセプターとして働く) DFPPY PPY PIQ 02

合成サポナイトとのハイブリッド化

H. Sato, et al. New J. Chem., 38, 132 (2014)

まとめ

▶粘土とlr(III)錯体とのハイブリッドLB膜によって青、黄、 赤色の3色発光と発光酸素センシングを可能とした。

▶青色発光のハイブリッドLB膜を用い、広い温度範囲において酸素分子に対する可逆・迅速な応答性を達成した。

▶3種類の異種錯体を人工積層したLB膜によって、酸素の 分圧により発光スペクトルが変わる多色発光性を実現した。

H. Sato et. al. Chemsensors, 2, 41-55 (2014)

 粘土面に吸着したイリジウム錯体間の光エネルギー 集約系構築: 青色発光から赤色発光への効率的な
エネルギー移動
H. Sato et al. Appl. Clay Sci. 97-98, 84 (2014)
H. Sato et al. New J. Chem. 38, 5715 (2014)

謝辞

愛媛大学理学部化学科

卒業研究生:国吉勇司氏、堤響子氏、中谷康彦氏、小田切健氏、伊藤里加子氏 技術員:越智美和氏、森本和也助教

愛媛大学大学院理工学研究科

(理学系) 長岡伸一教授、小原敬士准教授

(工学系) 白方祥教授、尾崎良太郎准教授

物質材料研究機構:田村堅志博士

東邦大学:山岸晧彦訪問教授、北澤孝史教授、住恵理子氏 北海道大学:加藤優助教

公益財団法人日本板硝子材料工学助成会

科学研究費 基盤研究(B)(23350069) 基盤研究(B)(26288039) JST A-STEP シーズ探索、シーズ顕在化