

令和4年度 第39回学術講演会

熱マネージメントに向けた酸化物半導体ナノ粒子の光熱制御 と透明反射遮熱技術への展開

東京大学大学院工学系研究科

電気系工学専攻

バイオエンジニアリング専攻

松井裕章

エネルギーに関する研究分野

*エネルギーの有効活用

✔エネルギー創出

https://www.maximintegrated.com/jp

http://bellona.org/news/ future-energy-system/

http://www.eandselectric.com/index. http://www.aliexpress.com/

*省エネルギー技術

ZEB·ZEH分野(ZEB: ゼロエネルギービル、ZEH:ゼロエネルギーハウス)

- ・住宅・ビル内の空調・照明システム
- ・窓への遮熱制御(Low-E技術)
- ・再生可能エネルギー
- ・エネルギーマネージメント
- ・環境・緑地化の推進

*透明反射遮熱フィルムの創出

Toyota Co. Ltd.

快適な室内環境を目指して

遮熱と断熱の違い

「遮熱」…太陽による日射を吸収しないようにすること 「断熱」…伝導、対流や放射による熱移動を防ぐこと

*遮熱の概念:Thermal-shielding

*断熱の概念:Heat-insulating

太陽光が窓や構造物で熱になりにくい (熱となる光を大気中に反射する)

> 屋内に伝わる 熱の絶対量が少ない

太陽光が窓や建材物で熱になるが屋内へ伝わるスピードが遅い

屋内に伝わる 熱量が少ない

ZEVに向けての熱マネージメント

次世代車に向けた反射による熱制御技術への展開 "Window and vehicle body: all light reflections"

"可視・電波透過性を持つ赤外反射遮熱フィルム"

*ADAS: Auto-driving assist-systems

✓可視・近赤外光による昼夜間モニターリング

Vehicle: EV/PHV ✓ Cruising distance and air conditioning

*ETC: (~ 5.8 GHz)

*ITS: 道路交通情報システム traffic system (~ 0.8 GHz)

*IT/IoTに向けた透明アンテナ (~28 GHz 帯域:5G 通信に向けて)

幅広い光・電磁波域における光学制御

"課題解決:本研究では酸化物半導体の表面プラズモン技術を応用"

*反射型の近赤外熱線遮断技術の開発

プラズモニクス:反射遮熱技術に向けて新しいコンセプト "金属から酸化物半導体材料へ"

*Surface plasmons on metal films

https://www.degruyter.com/view/j/nanoph.2017.6

*Surface plasmons on nanoparticles (wires)

https://www.osapublishing.org/oe/

FOCUS | COMMENTARY

Plasmonics in the mid-infrared

Ross Stanley

Plasmonics can be used to enhance mid-infrared sources, sensors and detectors for applications such as chemical sensing, thermal imaging and heat scavenging. The challenge now is to integrate these technologies in cost-effective, compact and reliable platforms.

酸化物半導体プラズモニクスを用いた 光熱制御とウインドウ応用への展開 酸化物半導体と金属材料の違い

*電子バンド構造

Au金属

 In_2O_3

"酸化物半導体は理想的なドルーデ成分" バンド間遷移(Interband transition)が無い

ITOナノ粒子の電場強度分布 "FDTD: 有限差分時間領域法" (3次元電磁界計算) ITOナノ粒子の光学応答 З г 2 Absorbance 3 000000000 × 0000 1

1.5

0

2

Wavelength (μm)

ナノ粒子表面近傍に強い電場増強を観測

(局在プラズモン励起)

2

2.5

In₂O₃:Sn (ITO) ナノ粒子の光学応答 "修正ミー理論の適用"

吸収 (σ_{abs})と反射 (σ_{Ref})の比率 $\sigma_{abs} / \sigma_{ref} > 10^5$ (ITO NP) $n_e: 1 \times 10^{21} \text{ cm}^{-3}$ $\sigma_{abs} / \sigma_{ref} > 10^2$ (Au NP) $n_e: 6 \times 10^{22} \text{ cm}^{-3}$

ITOナノ粒子それ自体は反射が弱い (完全吸収体に近い)

*光散乱(反射)強度 (*I*): $I \propto \left| (\vec{P}_p + \Delta \vec{P}_p + (P_a + \Delta P_a) \right|^2$ P: 双極子モーメント ΔP : 双極子モーメントの変化

ITOナノ粒子:2次元モノレイヤー

*スピンコーティング法の適用

"The hcp alignments: Thermodynamically stable "P. Jiang, J. Am. Chem. Soc. (2004)

Surface SEM images: spin-coating

"単ーナノ粒子、クラスターそしてモノレイヤーへ"

ACS Appl. Mater. Inter. 8, 11749 (2016).

Monolayer sheet of ITO NPs

3次元積層制御されたITOナノ粒子薄膜:赤外域における光学応答

"赤外域で高い共鳴反射性能の観測"

Number of NP layers

ITOナノ粒子薄膜内の電場及び電荷分布の可視化

"FDTD simulations"

"プラズモニック混成現象"

*FDTD model:

- ✓ Hexagonally closed pack (HCP) structure
- ✓ Interparticle distance: d = 2 nm
- ✓ Particle diameter: D = 36 nm

プラズモン励起モード

Peak-I : **3D dipole mode** (Inter- and intra-layer coupling) Peak-II : **2D dipole mode** (Intra-layer coupling) *Field and charge flows in ITO NP films

(i) Peak-II:2次元的な双極子相互作用

(ii) Peak-I:3次元的な双極子相互作用

*赤外領域における共鳴反射について "ナノ粒子間ギャップ内の強い電場増強" ITOナノ粒子薄膜の熱輸送:低熱伝導率材料へ

"High environment durability"

*有機脂肪酸

"分子リガンドの熱分解温度: T_d = 270-300°C"

分子リガンド制御: 高い熱耐性と湿度耐性の獲得 ITOナノ粒子薄膜の赤外反射と機械的歪み

"一軸方向への引張り歪み:フレキシブル性能"

実験手法について

ITOナノ粒子薄膜の形成

*ITOナノ粒子:有機金属分解(MOD)法

顕微赤外分光計測(μ-IR)

 $\Phi = 100 \ \mu m$ Spot fix

機械的試験 (一軸引張り試験)

共鳴反射強度:可逆的な応答を示す

GHzマイクロ波帯域の電磁波(電波)応答

"完全な電波透過性"

Anritsu Corp. Vector Network Analyzer Broadband Test set 3739B

*高いマイクロ波透過性<u>:</u> "ウインドウを通じての情報通信へ (IT/IoT及び5Gデータ技術) ウインドウ(窓)を通じての情報通信に向けた電波透過性の起源

*マイクロ波帯域の電磁波制御

Parameter fitting to a ES-VRH model

ACS Appl. Nano Mater. 2, 2806 (2019).

4. 透明遮熱におけるクロミック機能の創出

表面プラズモンの外場制御

✓ 光学的手法:バンド励起(価電子帯から伝導帯へ)
✓ 電気的手法:固液界面の電気二重層

調光スマートウインドウへの期待

株式会社グローバルインフォメーションは、市場調査レポート「スマートウィンドウ市場:世界の業界動向、 シェア、規模、成長、機会、予測(2021~2026年)」

熱・エネルギー利用の高効率化へ貢献

*照明や空調の制御システムと組み合わされることで、居住者の<mark>熱的・視覚的な快適性</mark>の向上 *スマートウィンドウとIoTの統合による**エネルギー管理**の効率化 *自動車や住宅等のエネルギー消費の効率化 表面プラズモン励起の外場制御 "調光スマートウインドウへの応用"

*従来のクロミック技術

VO2:熱制御

Y. Cui, Joule (2018)

http://news.chinatungsten.com/

ハイドルゲルポリマー:電気制御

https://www.ecplaza.net/products

近赤外域の熱遮蔽を行う場合、可視域も同時に 光カットする課題点

耐久性(スイッチング性能)

エレクトロクロミック技術 における歴史的背景と社会的要求 酸化物半導体ナノ粒子薄膜を用いた表面プラズモン クロミックの設計指針

ナノ粒子表面の固液界面における電子キャリア生成

ナノ粒子内の電子濃度制御は、表面プラズモンの共鳴波長シフトが可能

ITOナノ粒子:3次元積層制御された薄膜:プラズモニックマテリアルとして光機能

*近赤外・中赤外域の共鳴反射性能

"ナノ粒子間ギャップの光学的性質"

✓ナノ粒子間の光電場増強

✓ 2次元的・3次元的な光相互作用

*マイクロ波帯域の電波透過性

"ナノ粒子間ギャップの電子輸送"

✓ナノ粒子表面上の有機リガンド分子の存在
✓ナノ粒子間のホッピング(量子トンネル)伝導

*プラズモンクロミック技術の創出

"電子キャリアの電気化学的制御"

✓ナノ粒子内の電子濃度の変調

✓ 固液界面下での電気二重層の形成

透明反射遮熱技術に向けた新しい光学制御:熱マネージメントに向けて