チタン酸ストロンチウム薄膜の界面歪みで誘起される 強誘電性の探求

広島大学 大学院先進理工系科学研究科 中島伸夫

Research on the Ferroelectricity in Strontium Titanate Thin Films Induced by Surface Distortion

Nobuo Nakajima

Graduate School of Advanced Science and Engineering, Hiroshima University

概要

チタン酸ストロンチウム (SrTiO₃)は、全温度範囲にわたって安定な常誘電体である。立 方晶構造をとる高い対称性がその理由である。近年、歪みを持たせた SrTiO₃ に強誘電性 が出現するとの報告が多くなされている。そこで本研究では、単結晶に一軸応力を印加し たり、曲げ応力を加えてみたり、あるいは基板に薄膜として蒸着するなどの工夫によって、 異方性を持たせたさまざまな SrTiO₃ を用意した。それぞれに対し、X 線吸収分光測定を 行うことで、特に電気双極子を形成する Ti 陽イオン周りの局所的な対称性の変化に着目 した。その結果、単結晶試料においては、曲げ応力や一軸応力による変位型の強誘電性発 現は見られず、酸素欠損や Ti 陽イオンを取り囲む酸素八面体の傾斜などが推察された。 一方、薄膜においては変位型の強誘電性発現が期待される結果が得られ、基板材料との格 子整合関係が局所的な分極方向を決定することが示唆された。

英語

Strontium titanate (SrTiO₃) is a stable paraelectric material for the entire temperature range due to the high symmetry of the cubic lattice. Recently, there are several reports on the appearance of the ferroelectricity in the distorted SrTiO₃. In this study, therefore, we prepared SrTiO₃ with various anisotropies which are incorporated by mechanical bending or uniaxial pressure on a single crystal as well as depositions on substrates. For these samples, we focused on the variation of the local symmetry around the Ti cation which form the electric dipole moment via X-ray absorption spectroscopy. In a single crystal, no ferroelectricity was found neither by bending nor by a uniaxial pressure. On the other hand, in thin films, experimental results indicating the displacive-type ferroelectricity are observed, and it is speculated that the lattice matching condition between films and substrates determines the direction of the local polarization.

1. はじめに

チタン酸ストロンチウム(SrTiO₃)は、全温度領域にわたって安定な常誘電体である。結 晶構造は単純で、Fig. 1 に示す ABO₃型のペロブスカイト構造と呼ばれる対称性の高い構 造を取る。SrTiO₃はTiO₆八面体とそれを取り囲むAサイトのSrイオンのイオン結合性 が高く、同じペロブスカイト構造をもつチタン酸バリウム (BaTiO₃)やチタン酸鉛(PbTiO₃)でみられるようなAサイ トイオンと酸素イオンの共有結合による格子歪みが起こり にくいことが、常誘電性を安定化させている。

典型的な常誘電体である SrTiO₃ を歪ませることで強誘 電性が出現するという報告が古くからある^{1,2)}。当初は固 体物理学における相転移現象を理解する純粋理学的な興味 に留まっていたが、最近は実用強誘電体材料として用いら れている PbTiO₃の Pb(鉛)が人体に有害な環境ホルモン

として厳しく使用制限されるようになり、SrTiO₃の強誘電性に期待が集まっている。現在、 BaTiO₃が PbTiO₃の代替物質として実用に供されているものの、強誘電性が消失するキ ュリー温度(T_c)が130℃と低いことが PbTiO₃(T_c ~500℃)の完全な代替の妨げになってい る。一方、格子歪みによって誘起される SrTiO₃の強誘電性は、誘起される電気分極の大 きさは小さいものの、歪み由来であるために温度に依らず安定である。うまく制御するこ とができれば環境負荷の軽い実用物質として期待できる³⁾。

解決すべき課題として、SrTiO₃で報告されている歪み誘起の強誘電性が、欠陥構造に より偶発的に発生する性質なのか、あるいは単位格子自体が歪むことで生じる制御可能な 性質なのかという問題がある。筆者は、これをX線吸収分光(XAS)で明らかにしようと考 えた。XASでは、入射X線のエネルギーを注目元素の吸収端近傍に合わせることで、そ の元素周りの局所的な対称性を反映したスペクトルが得られる。ペロブスカイト構造をも つチタン酸化物では、Tiがそれを取り囲む酸素八面体の重心位置から変位(オフセンター 変位)することで単位格子内に双極子モーメントが生じる。Ti K吸収端XASを測ることで、 このオフセンター変位量に対応した変化が観測されることが分かっている⁴⁾。このスペク トルの特徴を利用して、さまざまな格子歪みを持った SrTiO₃の双極子モーメントの発生 を明らかにし、強誘電性の微視的な起源を解明することを目指した。

2. 実験方法

単結晶試料を用いた一軸応力下および曲げ応力下 の実験では、それぞれ厚さ200 µ m および100 µ m の(001)面板状試料を用いた。また、それぞれの応 力印加を可能にすべく、Fig. 2 に図示した試料ホル ダーを作製した⁵⁻⁷⁾。

薄膜試料は、SrTiO₃より格子定数が1%程度小さいLSAT(001)基板⁸⁾と1%程度大きいDyScO₃(011) 基板にパルスレーザー蒸着法によりエピタキシャル 成長させた。膜厚は、基板の格子定数を確実に保持 している薄さとXAS測定可能な厚さのバランスを 考慮して、20 nm 程度にした。

Ti K 吸収端の X 線吸収分光(XAS) 測定は、単結 晶試料に関しては SPring-8 BL39XU で、薄膜に関 しては KEK-PF BL9A と BL12C でそれぞれ行った。

Fig. 2 Schematics of pressure-load cells for (a) uniaxial and (b) bending stresses.

Fig. 3 に一例を示す。Ti K吸収端は、Ti 1s 電子が入 射 X線のエネルギーを吸収して非占有の 4p 軌道に双 極子遷移することで現れ、これが大きな吸収構造 (main edge)としてスペクトルを形作る。しかし、化 合物中のTi 元素は、それを取り囲む配位子の静電ポ テンシャルや軌道混成の影響を受けて、複雑なスペク トル構造を示すようになる。本研究では、前吸収端構 造(pre-edge)と呼ばれるピーク構造に注目した。Fig. 1 に示した立方対称構造では、Ti 3d 軌道は 6 配位し た酸素が作る配位子場によって、 t_{2g} 軌道と e_{g} 軌道の 2 つの軌道にエネルギー分裂する。1s → 3d は双極子

pre-edge region is enlarged in the inset.

禁制遷移であるが、四極子許容遷移であるため、弱いながらも明確なピークとしてスペク トルに現れる。特に、eg 軌道は電子軌道がTiから酸素の方向に分枝を伸ばしているため、 Ti-O 間の共有結合の変化に敏感である。SrTiO₃のTiがFig.1に矢印で示したようなオフ センター変位をすると、Ti-O 共有結合が強まり、eg ピーク強度が増大することになる。 実際、オフセンター変位をしているBaTiO₃やPbTiO₃などの強誘電体ではeg ピークは非 常に大きくなっている。したがって、SrTiO₃でも応力によるeg ピーク強度の増大が観測 されれば、すなわちそれは強誘電性の出現を示唆する有力な証左といえる。

3. 結果と考察

LSAT 基板上に PLD 法で製膜した SrTiO₃ 薄膜(膜 厚 20 nm)の Ti K吸収スペクトルの温度依存性の結果 を Fig. 4 (a) に示す。pre-edge 領域の拡大図であり、X 線の入射角が 0°入射(垂直入射)と 45°入射を合わせて 表示している。また、参照スペクトルとして、通常の 粉末試料の温度依存性を Fig. 4 (b) に示す。両者を見 比べて顕著な違いは、SrTiO₃/LSAT 薄膜では eg ピー ク強度が大きくなっている点が挙げられる。eg ピーク の増大は、Fig. 5 に示した波動関数の空間分布を見て わかる通り、共有結合によって配位酸素と Ti の軌道 混成が強まることで生じる。特に、Ti が酸素の方向 ヘオフセンター変位することで強度増大する。これは、 単位格子内に双極子モーメントが生じたことの直接証 拠である。

通常は四極子遷移によって出現する pre-edge 構造 であるが、対称性の低下によって双極子許容遷移とな ると考えることができる。薄膜でも、粉末でも温度降 下によって eg ピーク強度が減少するが、SrTiO₃/ LSAT 薄膜の 45°入射の場合の減少率が小さいことが 解析して分かった。このことは。SrTiO₃/LSAT 薄膜 では面直方向に自発分極が誘起されていることを示唆

Fig. 4 Temperature dependence of Ti pre-K edge spectra of (a) a SrTiO₃ thin film on an LSAT substrate and of (b) SrTiO₃ powders. している。SrTiO₃/DyScO₃ 薄膜では角度依存性の 測定ができなかったため、最終的な結論は今後の追 実験によるが、0°入射のデータでも温度降下による eg ピーク強度が小さかったことから、LSAT 基板と は逆に面内方向に自発分極が誘起されていると結論 することができる。

Fig. 5 Schematics of t_{2g} and e_g orbitals.

4. 結論

単結晶のXAS測定については本報告書では結果を示していないが、すでに査読付き欧 文誌で報告済みであるのでそちらを参考にされたい。結論として、単結晶試料で報告され ている一軸応力や曲げ応力による強誘電性の出現は、それぞれTiを取り囲む酸素八面体 の反強的な回転を伴った歪みによるもの、およびマイクロクラックにより誘発された酸素 欠損に起因するものである。一方、20nm 程度の極薄膜においては、基板の格子定数に束 縛された格子歪みによって、面直方向(LSAT 基板)あるいは面内方向(DyScO₃ 基板)の自 発分極が誘起されることが推察された。

5. 謝辞

薄膜試料の作製は、東京工業大学の安井伸太郎助教に作製して頂いた。放射光を用いた XAS 測定は高輝度光科学研究センター(SPring-8)と高エネルギー加速器研究機構(KEK-PF)のビームライン担当者にご協力を頂いた。本研究は、平成 29 年度日本板硝子材料工 学助成会の研究助成を受けて行ったものである。この紙面を借りて感謝申し上げる。

6. 参考文献

- 1) H. Uwe and T. Sakudo, Phys. Rev. B 13, 1 (1976).
- 2) Y. Fujii, H. Uwe, and T. Sakudo, J. Phys. Soc. Jpn. 56, 1940 (1987).
- 3) J. H. Haeni, P. Irvin, D. G. Schlom et al., Nature 430, 758 (2004).
- 4) R. V. Vedrinskii, V. L. Kraizman et al., J. Phys.: Condens. Matter 10, 9561 (1998).
- 5) C. Lu, N. Nakajima, and H. Maruyama, J. Phys.: Condens. Matter 29, 045702 (2017).
- 6) C. Temba, S. Kawakami, N. Nakajima et al., J. Kor. Phys. Soc. 66, 9 (2015).
- 7) C. Lu, C. Temba, N. Nakajima et al., J. Phys.: Condens. Matter 29, 395502 (2017).
- 8) (LaAlO₃)_{0.29} (SrAl_{0.5}Ta_{0.5}O₃)_{0.71} の化学式で表される混晶ペロブスカイト物質